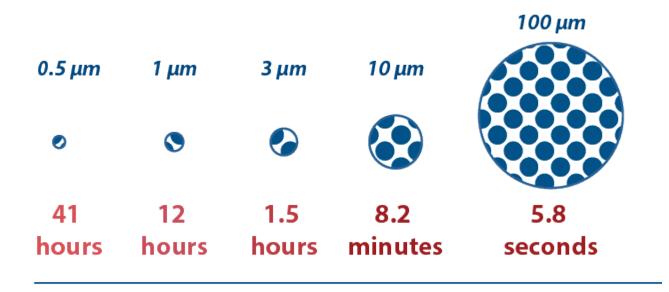
THE LATEST RESEARCH IMPACTING WORKPLACE RE-OCCUPANCY PLANNING

Steve Horwood and Luke Leung



COVID-19 & Ventilation

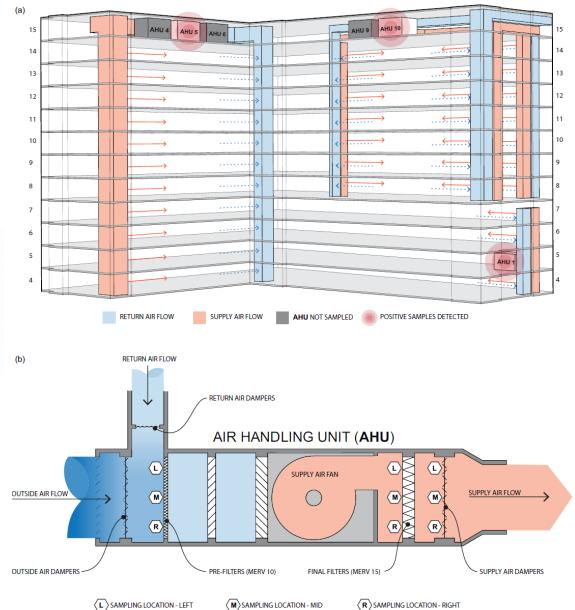
SARS-CoV-2

Time to settle 5 feet by unit density spheres

- Typical droplet size is between 5 to 10 μm
- Naked virus size is in average between $0.06 0.15 \ \mu m$
- Contaminated droplets can float in the air and infect others
- With direct air stream, it is possible contaminated micro droplets can be propelled further in the air or stay suspended longer.

Modes of Transmission

- Infectious droplets (air or surface) are still believed to be the primary route of transmission via
 - Fomite touch an contaminated area then touch eyes/nose
 - Direct Exhale infectious droplets to other
 - Local Air Inhale infectious droplets while still in air
- There is an increase body of researches suggesting the possibility of aerosol path. WHO's July 9th briefing and recent (July) update from EPA.
- We still don't know the required dose of viable virus to infect a healthy person


Is It In My HVAC System?

- Studies had shown traces of SARS-CoV-2 virus RNA throughout the HVAC system in facilities with active COVID-19 patients.
- Samples were taken by following the return air flow from space all the way to the return air damper before the mixing dampers and 25% of the samples were found positive
- However, it does not mean they are still active and the dose is enough to infect a healthy person.
- All we can conclude is it can circulate within HVAC system, but inconclusive on if it can be transmitted through HVAC system.

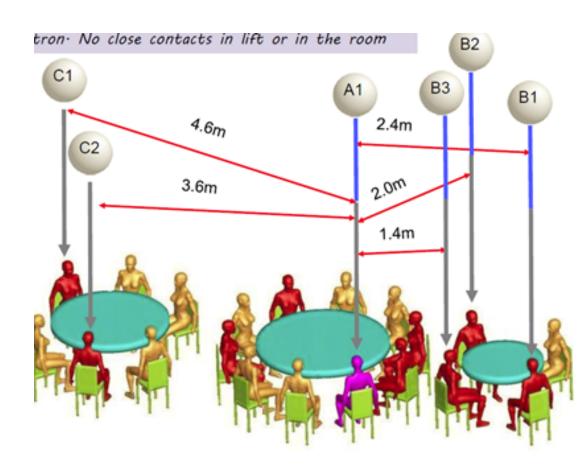
	Pre-	ilters	Final	Filters	Supply Air Dampers		
	Total Number (n)	Number Positive (%)	Total Number (n)	Number Positive (%)	Total Number (n)	Number Positive (%)	
	20	7 (35)	12	2 (16.67)	24	5 (20.8)	
Cumulative Gene Copies (X)	354.8 (34.2)		103.2	2 (86.2)	342.5 (77.7)		

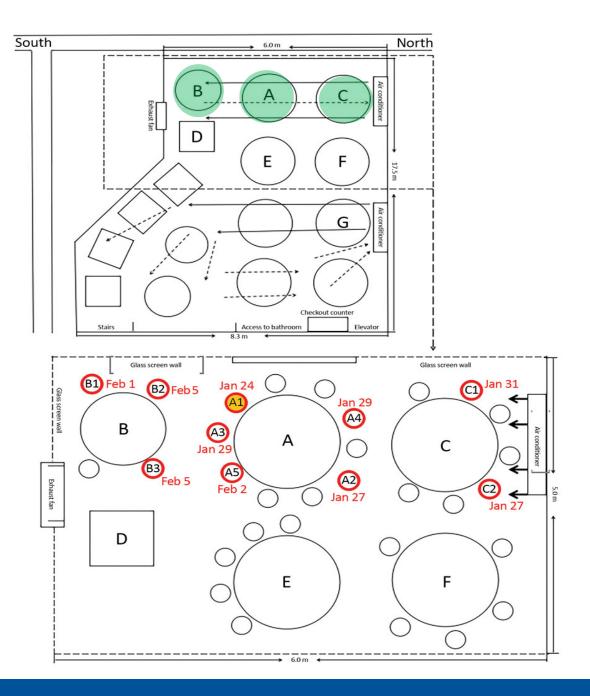
VIRUS FOUND IN AHU

Identification of SARS-CoV-2 RNA in Healthcare Heating, Ventilation, and Air Conditioning Units

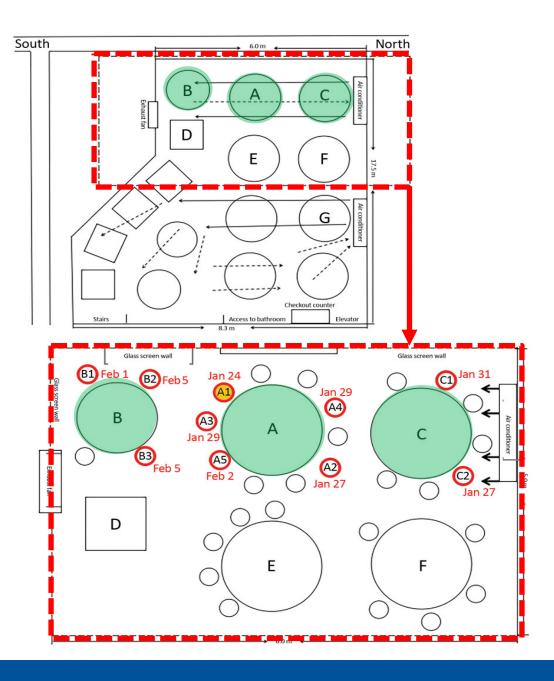
Patrick F. Horve, Leslie Dietz, Mark Fretz, David A. Constant, Andrew Wilkes, John M. Townes, Robert G. Martindale, William B. Messer, Kevin G. Van Den, Wymelenberg

Breakdown of Two Super-spreader Cases


Restaurant in Guangzhou, China (Jan 2020)	Choir Practice in Seattle, USA (Mar 2020)
 Restaurant is a 5-floor building with no windows Each floor has its own air-conditioner and exhaust fan Diner's tables were 1 meter apart Index case patient were asymptomatic 9 infected cases within 3 clusters Contaminated droplets were propelled to nearby diner's table by strong direct supply air stream The restaurant staffs were not infected Occupants from tables outside of airstream direction did not get infected Limited physical movement of index patient No outside air in the AC unit 	 61 choir members met in a church for a 2.5 hours long practice Index case patient were symptomatic 87% of attendees were infected (32 confirmed, 20 probable out of 60) Virus was believed to be aerosolized from loud singing and speaking that contributed to both short-range air transmission and fomite transmission



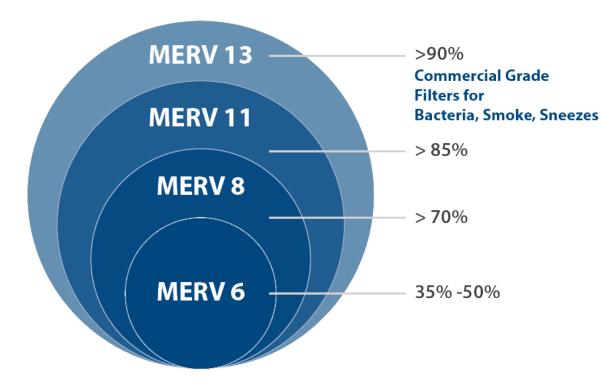




Call to Action – Ventilation Unit Operation

Practice the "Do-No-Harm" principle and consider best practice measure against transmission

Goal	Actions	Considerations
Increase Dilution Ventilation	 Open outside air intake wider Operate ventilation unit longer Disable DCV control 	 Impact on energy consumption relating to cooling/heating Wear on ventilation unit and consumables Condition of outside air (i.e. high PM2.5) Location of outside air intake (i.e. next to pedestrian sidewalk) Damper Operation (Linkage, Seal, Control, etc.)
Minimize local transmission	 Identify and minimize localized drafty spot Adjust seating arrangement or air distribution 	 Impact on air distribution and total air exchange

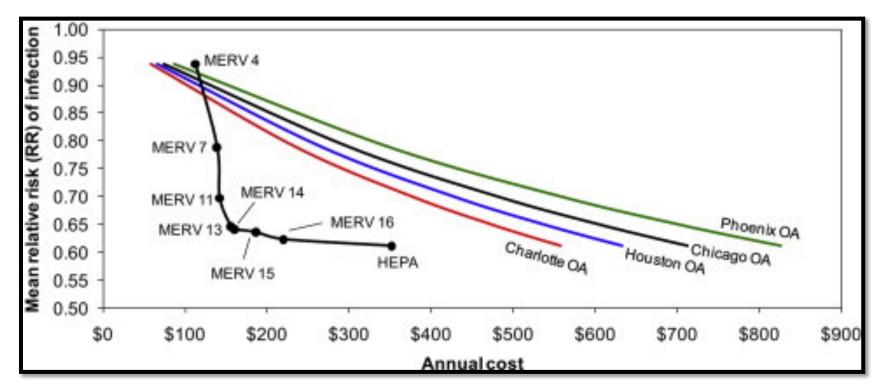


COVID-19 & Air Filtration

Filters vs. Droplets

MERV Rating Trap particles size 3 to 10 microns

- Typical droplet size is between 5 to 10 μm
- Naked virus size is in average between 0.06 – 0.15 μm
- MERV-13 filters will capture 90% of particles between 3 to 10 μm



MERV Ratings

MERV Rating	Trap particles size 0.03 to 1 microns	Trap particles size 1 to 3 microns	Trap particles size 3 to 10 microns	Typical Application	Notes/ASHRAE Standards
MERV 1 - 4	N/A	N/A	< 20%	Fiberglass/Aluminum Mesh filter for Pollen, Dust Mites, Spray Paint, Carpet Fibres	
MERV 5	N/A	N/A	20% - 35%	Cheap Disposable	
MERV 6	N/A	N/A	35% - 50%	Filters for Mold Spores, Cooling Dusts,	Minimum ASHRAE Standard for Commercial Application (62.1)
MERV 7	N/A	N/A	50% - 70%	Hair Spray, Furniture Polish	
MERV 8	N/A	N/A	> 70%		Minimum ASHRAE Standard for High Performance Green Building Standard (189.1)
MERV 9	N/A	< 50%	> 85%	Better Box Filters for	
MERV 10	N/A	50% - 65%	> 85%	Lead Dust, Flour, Auto Fumes, Welding Fumes	
MERV 11	N/A	65% - 80%	> 85%		Minimum ASHRAE Standard when atmospheric particulate matter is less than 2.5 micrometers, a.k.a. PM2.5 (62.1)
MERV 12	N/A	> 80%	> 90%		
MERV 13	< 75%	> 90%	> 90%	Commercial Grade	
MERV 14	75% - 85%	> 90%	> 90%	Filters for Bacteria, Smoke, Sneezes	Recommended by ASHRAE Epidemic Task Force
MERV 15	85% - 95%	> 90%	> 90%		
MERV 16	> 95%	> 95%	> 95%		
MERV 17	99.97%	N/A	N/A	HEPA & ULPA for	HEPA = High-Efficiency Particulate Air
MERV 18	99.997%	N/A	N/A	Viruses, Carbone Dust	
MERV 19	99.9997%	N/A	N/A		
MERV 20	99.99997%	N/A	N/A		

Filter Effectiveness vs. Operation Cost

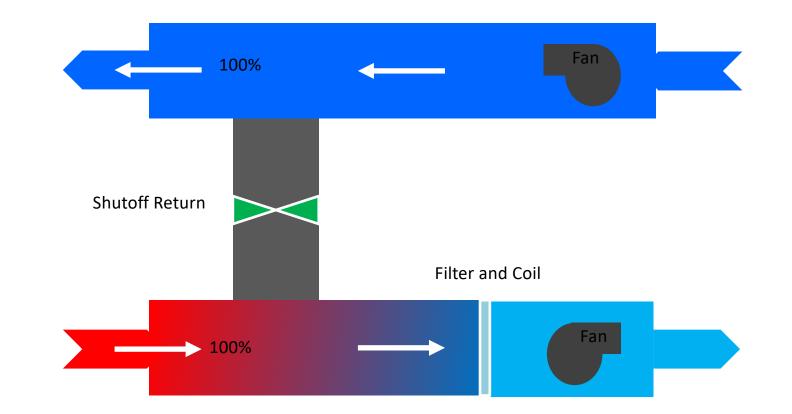
P. Azimi and B. Stephens, "HVAC filtration for controlling infectious airborne disease transmission in indoor environments: Predicting risk reductions and operational costs," 04 09 2013. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7127325

Call to Action – Filter Upgrade

Practice the "Do-No-Harm" principle and consider best practice measure against transmission

	Name							_				
HVAC Contractor	Contact					Ava	ailable	Documen	tations			
	Phone/Email					Ma	anufactu					
	Name		Elect As-b		HVAC As-built		rer Vanual	BAS Schematic	BAS Points l	ist	Air Balancing Report	
BAS Contractor	Contact											
	Phone/Email											
	Name							Notos				
Air Balancer	Contact							Notes				
	Phone/Email											
	Name											
Base Building Engineer	Contact											
	Phone/Email											
	Name											
Base Building Commissioning Agent	Contact											
	Phone/Email											
	isting Filte				New Filter							
Make:		Model:			Make:			I	Model:			
Size		Thickness	ME	RV	Size			Thickness	5		MERV	
Dirty			Clean		Dirt	v					Clean	
ΔP Setpoint ΔP Ad	ctual Supply	CFM ΔP Setpoin		Supply CFM	ΔP Setpoint	ΔP Actual	l Suj	pply CFM	ΔP Setpoint	ΔP Actual	Supply CFM	
Motor RPM Volt	tage Am	p Motor RPM	1 Voltage	Amp	Motor RPM	Voltage		Amp	Motor RPM	Voltage	Amp	

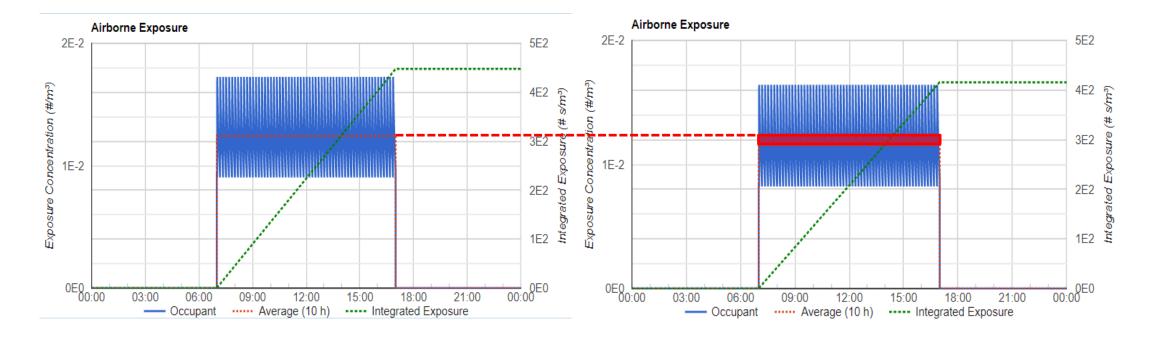
Sample Worksheet to be used for upgrading filter rating, follow ASHRAE recommendation for detail steps. <u>https://www.ashrae.org/technical-</u> resources/building-readiness#practical



Be Mindful Of.....

- The filter will only trap the virus, but not necessary kill it.
- Filters may be contaminated, so removal, bagging and disposal of these filters requires additional safety measures
- The ventilation system may not be designed for the characteristic of higher rating filters. (e.g. air flow, pressure drops, etc.)
- Bypass of filter by gaps around it 10 mm gap between the filter and duct resulted in a decrease in the ultrafine particle collection efficiency of a MERV 15 filter by ~60%
- Cost Impact Premium filter can be expensive

VAV SYSTEM 100% OUTSIDE AIR


MINIMUM OUTSIDE AIR

Operate and Maintain the HVAC System

MERV 13 FILTER IS MORE PRACTICAL THAN 100% OUTSIDE AIR

MERV 13 FILTER

100% OUTSIDE AIR

Environmental Condition -Temperature & Humidity

What Do You Know So Far?

- Studies show a direct correlation between the temperature and humidity to the decay of SARS-CoV-2.
- Optimal relative humidity range to minimizing airborne transmission is between 40%rh to 60%rh
- Higher space temperature reduces decay time of SARS-CoV-2

Surface Decay Calculator (DHS): <u>https://www.dhs.gov/science-and-technology/sars-calculator</u> Airborne Decay Calculator (DHS): <u>https://www.dhs.gov/science-and-technology/sars-airborne-calculator</u>

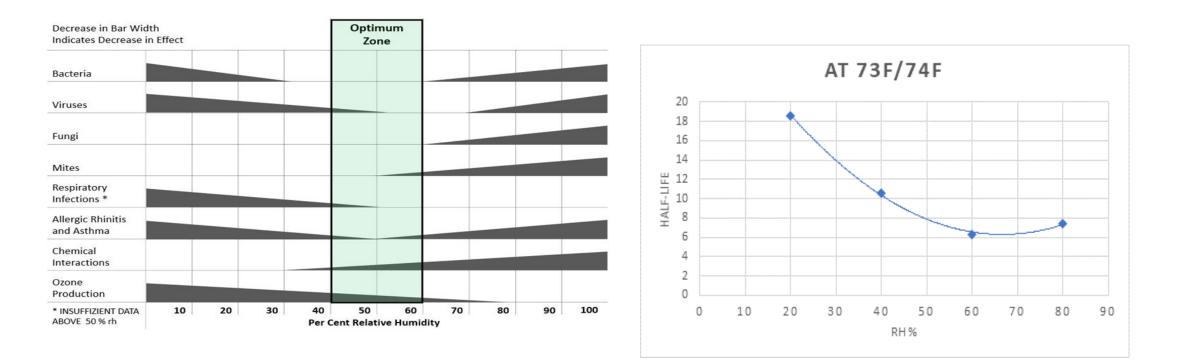
Call to Action – Environmental Condition

Practice the "Do-No-Harm" principle and consider best practice measure against transmission

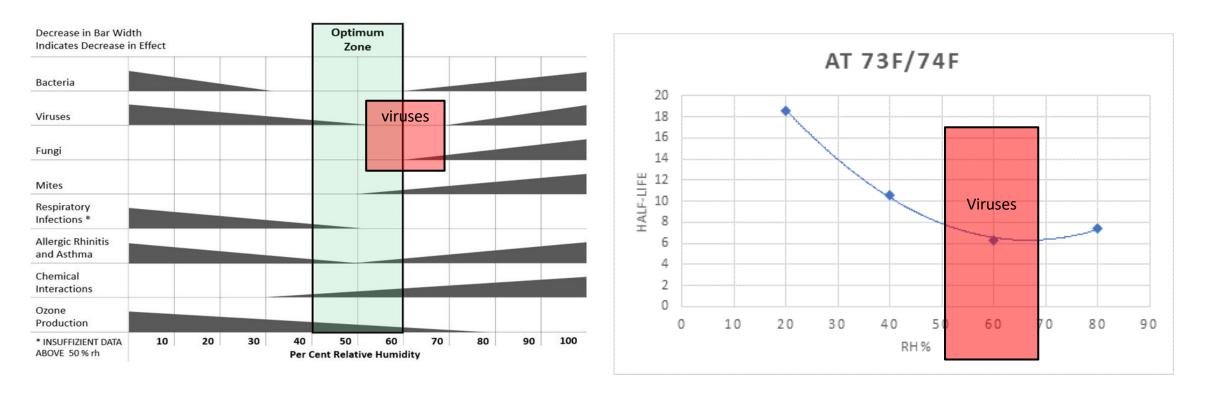
Goal	Actions	Considerations
Maintain optimal space RH between 40% to 60%	 Verify operation of humidifiers Install humidifiers as required Modify HVAC humidity control sequence and set points Verify and calibrate accuracy of all humidity sensors 	 Impact on energy consumption relating to humidification & de-humidification Occupant Comfort Original intent use of space Wear/tear on ventilation unit and consumables Condition of outside air humidity Location of outside air intake
Increase space temperature	 Modify HVAC temperature control sequences & set points Verify calibrate accuracy of all temperature sensors 	 Impact on energy consumption relating to heating and cooling Occupant Comfort Wear/tear on ventilation unit and consumables Condition of outside air temperature Location of outside air intake

SARS-COV2 AIRBORNE DECAY CALCULATOR

SARS-CoV-2 Airborne Decay Calculator						
UV Index:		Temperature	:	Relative Humidity:		
1	10	50	86	20	70	
	10		86°F/30.0°C		70%	
COVID Stability:						
% Virus Decay			Minutes	Hours		
50% (half-life):			1.88	0.03		
90%:			6.24	0.10		
99%:			12.48	0.21		

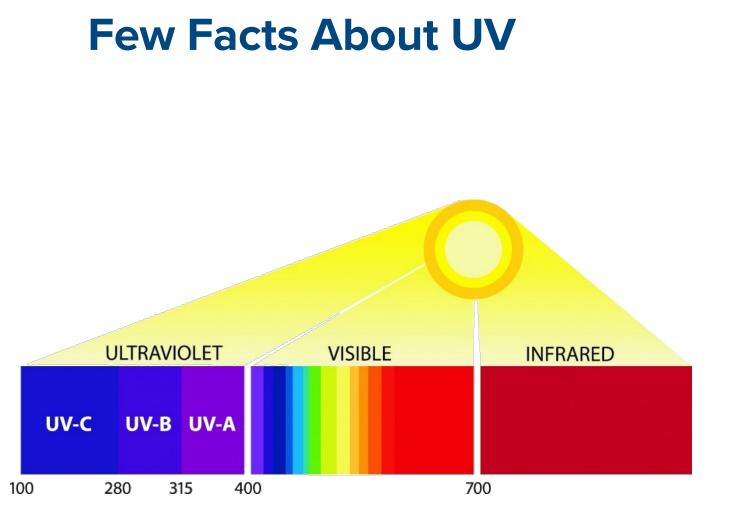


SARS-COV2 AIRBORNE DECAY CALCULATOR


SARS-CoV-2 Airborne Decay Calculator						
UV Index:		Temperature:		Relative Humidity:		
1	10	50	86	20	70	
	10		86°F/30.0°C		70%	
COVID Stability:						
% Virus Decay		Minutes		Hours		
50% (half-life):		1.88		0.03		
90%:		6.24		0.10		
99%:		12.48		0.21		

SARS-CoV-2 Airborne Decay Calculator							
UV Index:		Temperature:		Relative Hum	idity:		
1	10	50	86	20	70		
	1		50°F/10.0°C		20%		
COVID Stability:							
% Virus Decay		Minutes		Hours			
50% (half-life):		111.11		1.85			
90%:		369.10		6.15			
99%:		738.21		12.30			

Call to Action – Indoor Environment Quality Dashboard


- Simple monitor only mini-BAS
- Leverage existing infrastructure if available
- Expand beyond T/RH/CO2
- Can have both measured indexes or calculated indexes
- Additional trending and analytics to gain additional insight

Ultraviolet Germicidal Irradiation (UVGI)

- The shorter the wavelength, the higher the disinfection effectiveness (i.e. UV-C is better than UV-A)
- UV-C photons penetrate cells and damage the nucleic acid, rendering the pathogen incapable of reproduction, or microbiologically inactive.
- The longer the exposure the higher the effectiveness
- COVID-19 related data is still limited but there is a definite correlation to the decay of SARS-CoV-2.

Airborne Decay Calculator (DHS): https://www.dhs.gov/science-and-technology/sars-airborne-calculator

Call to Action – Adding UVGI

Practice the "Do-No-Harm" principle and consider best practice measure against aerosol transmission

	Installation	Considerations	Sample
In-duct Air	In ventilation system/ductwork, targeting air	• Airflow can limit the effectiveness of UV.	
In-duct Surface	In ventilation system next to high- pathogen surfaces, targeting surface	• For cooling coils, drain pans, etc.	
Space	Any space as required can target both air and surface	 Use a schedule to accommodate occupancy Use portable unit if the retrofit option is not feasible When using during occupied hours, additional measures are required for occupant's health & safety 	

Other Considerations

Other Building Systems

Practice the "Do-No-Harm" principle and consider best practice measure against aerosol transmission

control devices are operational continue to circulate water with equipment to even out spikes o	BAS	Electrical
 Confirm system capability for data trending and archiving Backup your DDC system database. Practice action driven data collection and analytics During the previous SARS-CoV-1 epidemic, virus could be transmitted through plumbing traps, although no similar evidence relating to SARS-CoV-2, precaution should be taken by keeping plumbing traps full of water Reedback Collect Collect Collect Action Collect Coll	 control devices are operational Confirm system capability for data trending and archiving Backup your DDC system database. Practice action driven data collection and analytics 	 with equipment to even out spikes on electrical demand oV-1 Preventative service such as thermography hough no SARS-CoV-en by

Sample Recommended Pilot Project

Sample Pilot Project For Distributed Retail

Action	Expected Outcome	Resources	Measure, Validate, C.I	Concerns & Notes
Dilution Ventilation	 Increased overall IAQ & lower harmful particulate concentration Most effective combined with enhanced filtration 	 \$500/sensor Additional programming and installations are required 	 Adjust & document changes made on outdoor air intake Monitor and trends supply and return CO2 to understand the effectiveness of dilution 	 Dilution is occurring naturally through building openings Leverage local weather services to understand outdoor condition
Enhanced Filtration MERV 13	 Removal of <i>micron size</i> particulate such as SARS-CoV-2 	 Cost increase varies based on qty and frequency (e.g. \$500/yr) 	 Monitor PM2.5/5/10 levels in space Local surface swab testing Pressure drop across filter 	 Consider air distribution configuration (% of return air?) System capability for higher MERV
Temperature Control	 Maintain a balance of optimal environment for mitigating virus spread 	 <1 hour Programming & Configuration (\$200) 	Trend space temperature	 Occupant comfort – implement in stages
Humidity Control	 Maintain space humidity between 40-60 %rh 	 Cost varies based on existing infrastructure (CAPEX) 	Trend space humidity	 Lack of existing humidification equipment
Enhanced Sanitation Hand Held Swabbing	Safer high touchpoint surfaces	 \$ 1,500 / location \$ 240 / year 	Validates surface pathogen count.Informs frequency and quality	

Sample Pilot Project For Distributed Retail

Action	Expected Outcome	Resources	Measure, Validate, C.I	Concerns & Notes
Occupancy Counting	Collect occupancy pattern to inform hard/soft services	 \$1,000 / entry Programming & Configurations 	 Total active occupants in building Align activities/measures appropriately based on occupancy 	 Integration to existing building system
Thermal Screening	Insight of occupant well-beingPrediction of seasonal illness	 \$450/month/location (36 months) 	Occupant body temperature	 Non-intrusive measuring up to 10 entrants concurrently
IAQ Dashboard	 Validation, Informed Control, Informed Risk Management, Increased Communication 	TBD depending on existing infrastructure	All IEQ related data that can be captured and normalized into one platform	Existing infrastructure

Selected Next Step

- Pilot location 1 Dorval Branch (full control installed)
- Pilot location 2 1x local branch (with no digital control)

References

- Harvard Medical School, "Coronavirus Resource Centre," 2020. [Online]. Available: https://www.health.harvard.edu/diseases-and-conditions/coronavirus-resource-center.
- World Health Organization, "Indoor Air and Coronavirus (COVID-19)," [Online]. Available: https://www.epa.gov/coronavirus/indoor-air-and-coronavirus-covid-19.
- WHO, "Transmission of SARS-CoV-2: implications for infection prevention precautions," 09 07 2020. [Online]. Available: https://www.who.int/news-room/ commentaries/detail/transmission-of-sars-cov-2-implications-for-infection-prevention-precautions. [Accessed 12 07 2020].
- World Health Organization, "Modes of COVID-19 Transmission," 2020. [Online]. Available: https://www.who.int/news-room/commentaries/detail/modes-of-transmission-ofvirus-causing-covid-19-implications-for-ipc-precaution-recommendations.
- ASHRAE, "ASHRAE COVID-19 Technical Resource," 2020. [Online]. Available: https://www.ashrae.org/covid19.
- P. F. Horve, L. Dietz, M. Fretz, D. A. Constant, A. Wilkes, J. M. Townes, R. G. Martindale, W. B. Messer and K. Van Den Wymelenberg, "Identification of SARS-CoV-2 RNA in Healthcare Heating, Ventilation, and Air Conditioning Units," 26 06 2020. [Online]. Available: https://www.medrxiv.org/ content/10.1101/2020.06.26.20141085v1. [Accessed 20 07 2020].
- Nature Research, "Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals," 27 04 2020. [Online]. Available: https://www.nature.com/articles/s41586-020- 2271-3. [Accessed 01 07 2020].
- ASHRAE, "Practical Guidance for Epidemic Operation of Energy Recovery Ventilation Systems," 09 06 2020. [Online]. Available: https://www.ashrae.org/file%20 library/technical%20resources/covid-19/practical-guidance-for-epidemic-operation-of-ervs.pdf. [Accessed 03 07 2020].
- United States EPA, "Indoor Air Quality," [Online]. Available: https://www.epa.gov/indoor-air-quality-iaq/what-merv-rating-1.
- P. Azimi and B. Stephens, "HVAC filtration for controlling infectious airborne disease transmission in indoor environments: Predicting risk reductions and operational costs," 04 09 2013. [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7127325. [Accessed 20 07 2020].
- ASHRAE, "ASHRAE Position Document on Infectious Aerosols," April 2020. [Online]. Available: https://www.ashrae.org/file%20library/about/position%20 documents/pd_infectiousaerosols_2020.pdf
- World Health Organization, "Coronavirus Disease 2019 Q&A," 2020. [Online]. Available: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/ questionandanswers-hub.
- CDC, "How COVID-19 Spreads," 06 2020. [Online]. Available: https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/how-covid-spreads.html. [Accessed 01 07 2020].

Steve Horwood Ainsworth – Toronto, Ontario Steve.Horwood@ainsworth.com

Luke Leung Skidmore, Owings & Merrill (SOM) luke.leung@som.com

