

Financial Benefits of Energy Savings

April 17, 2013 Dr. Sharon L. Levin, MBA, CPA

Dr. Sharon L. Levin, MBA, CPA

Experience:

13 years in energy industry 25 years in higher education

ENERGY STAR Portfolio Manager Trainer Curriculum Developer: ENERGY STAR, BOMA Energy Efficiency Program (BEEP), BOMA Sustainability Operations Series (SOS)

Agenda

- Direct financial benefits of energy efficiency
- Federal and state financial incentives
- Federal Energy Policy Act
- Hedging against volatile fuel prices
- Free DOE and EPA energy calculators
- Emissions trading
- Case Studies

Direct Benefits of Energy Efficiency

Increased NOI

Increased Asset Value

Increase Net Operating Income (NOI)

Reducing energy consumption reduces energy costs, which increases NOI

Assumptions: Office building size = 100,000 sf; energy costs = \$2.50/sf

Example: assume client reduces energy consumption 10% based on MSCA contractor recommendations

Results: $2.50/\text{sf} \times 10\% = 25 \text{¢/sf} \cos t \text{ savings } \times 100,000 \text{ sf}$

Bottom line: \$25,000 energy savings & increase to NOI

Capitalization Rate (Cap Rate)

Definition: ratio between Net Operating Income & Market Value

Used to estimate market value

Equations:

Cap rate = Net Operating Income / Market value

Therefore,

Market value = Net Operating Income / Cap rate

Increased Building Value

Income Approach to Valuing Assets

Increasing NOI increases property value

NOI increased \$25,000

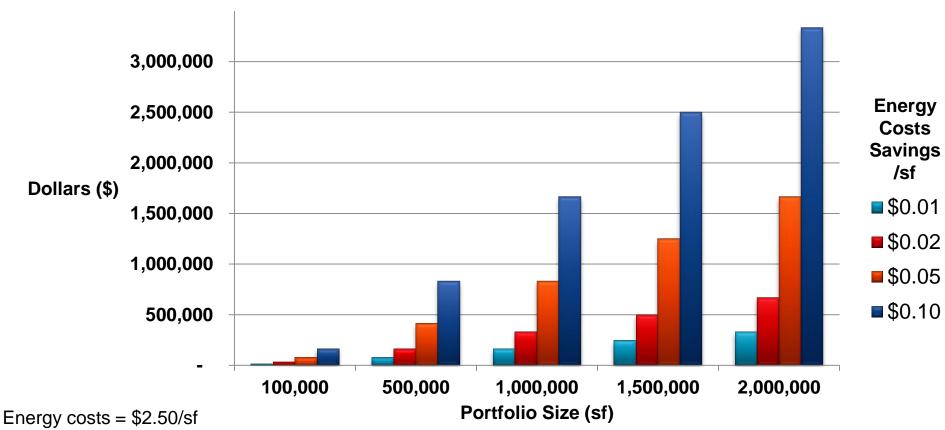
Capitalization rate = 6%*

Market value = Net Operating Income / Cap rate

\$25,000 / .06 = \$416,667

Bottom line: Market Value of Property

\$416,667 (Estimated)



^{*} Estimated national average for high quality real estate

Pennies to Millions

Asset Value Increase

Benefit to MSCA Contractors

Clients are in a better position to obtain funding to pay for YOUR recommendations

Assumptions: You recommend purchasing \$100,000 of energy efficient equipment

Client borrows \$100,000, Interest rate = 5%, Term = 15 years

Client's payment = \$790/month or \$9,480/year

\$9,480/year payment is offset by \$25,000/year energy cost savings

Bottom line: \$15,520 POSITIVE net cash flow BEFORE depreciation & financial incentives

Depreciation of HVAC

Traditional (MACRS)	Cost Segregation
\$100,000 / 39 years = \$2,564/year	100,000/7 years = 14,285/year
40% tax rate ≈ \$1,025 tax savings	40% tax rate ≈ \$5,714 tax savings

15,520 + 1,025tax savings = 16,545

Bottom line: \$16,545 POSITIVE annual cash flows BEFORE financial incentives

Reminder: loan payment ends after 15 years, thereby increasing annual cash flow \$9,480/year.

* Cost segregation (component) depreciation may be possible

Federal & State Financial Incentives

Federal & State Financial Incentives

DSIREUSA.org

Database of State Incentives for Renewables & Efficiency

Also includes Federal Financial Incentives, including Tax deductions & credits

State Financial Incentives

Inform
customers of
these
financial
incentives as
a means to
offset
YOUR fees

Maryland	California		
Sales Tax	Incentive		
State Loan Programs			
Local Rebate Program			
State Rebate Program			
Property Tax Incentive			
Performance-based Incentive			
Utility Rebate Program (many)			
Property Assessed Clean Energy (PACE) Financing			
Corporate Tax Credit Personal Tax Credit	Leasing Program Green Building Incentive		

State Grant Program

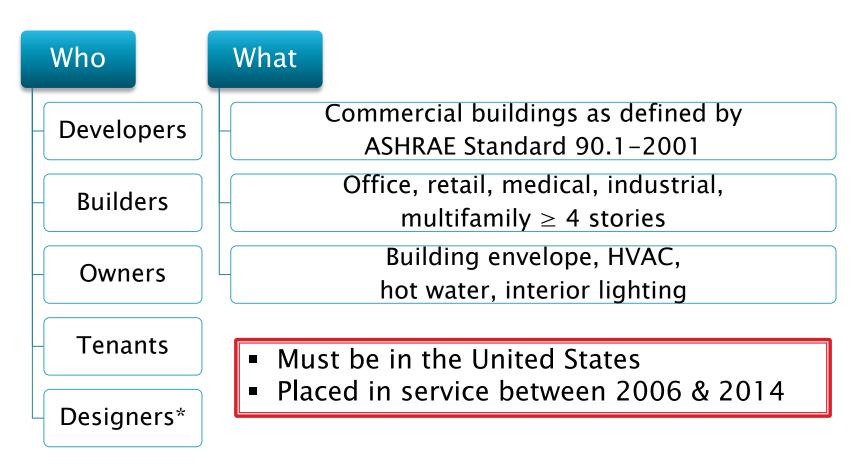
Utility Grant Program

Utility Loan Program

Polling Question

Which financial incentives has your company recommended as a means to offset HVAC costs?

- a) Utility rebate, loan, & grant programs
- b) Federal & state tax incentives
- c) State rebate, loan, & grant programs
- d) Performance-based incentives


Federal Energy Policy Act EPAct of 2005

Commercial Tax Deductions

^{*} Architects & engineers may be eligible for deduction if building is owned by government

Federal Energy Policy Act (EPAct)

- IRS Code Section § 179D
- Placed in service after 12/31/05 & before 12/31/14
- Reduce total annual energy & power costs

Applicable completion dates	Indoor lighting	HVAC & Hot water	Building envelope
1/1/06 to 12/31/08	16-2/3%	16-2/3%	16-2/3%
1/1/06 to 12/31/13	20%	20%	10%
4/23/12 to 12/31/13	25%	15%	10%

Note: % reduction is in comparison to a reference building that meets the minimum requirements of ASHRAE 90.1-2001

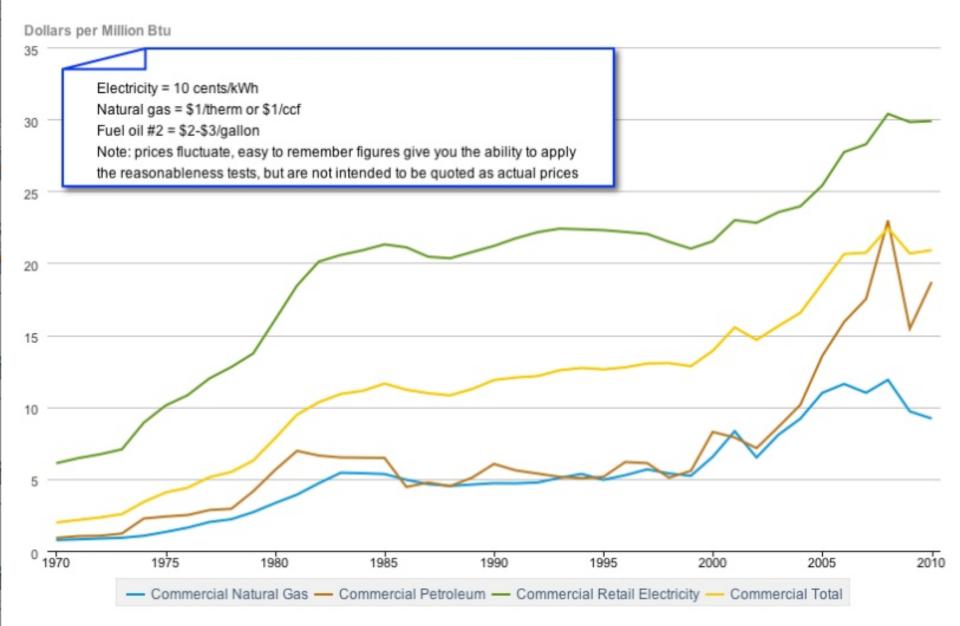
Immediate Tax Savings: Combined Tax Rate of 40%

A one time deduction of \$1.80/sf for all 3 or 60¢/sf for any 1 system ≥ 50% Reduction in total energy

Building Envelope	Lighting	HVAC & Hot Water

	Investm	nent Amount in	Dollars			
Total Building sf	Lighting \$.30 - \$.60/sf	HVAC \$.60/sf	Building Envelope \$.60/sf	Maximum Deduction \$1.80/sf	Immediate Tax Savings	
100,000	\$30,000 to \$60,000	\$60,000	\$60,000	\$180,000	\$72,000	
500,000	\$150,000 to \$300,000	\$300,000	\$300,000	\$900,000	\$360,000	

Hedging Against Volatile Energy Prices



Hedging

Definition: making an investment to reduce the risk of adverse price movements

Educate your customers to hedge against volatile energy prices by:

- Upgrading their EMS
- Better preventive maintenance program
- Purchasing more VFD's & VAV's
- Investing in higher efficiency HVAC equipment
- Installing duel fuel systems (if appropriate)
- Investing in renewal energy equipment
 - Become a renewal energy system expert

Free DOE & EPA Energy Calculators & Energy Simulation Software

Free Energy Calculators & Energy Modeling Software

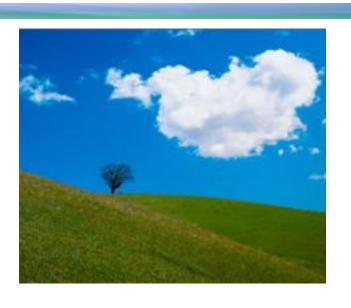
		Excel-based Calculators	Purpose	Link
		DOE: Central air conditioning	Excel based. Estimates life cycle costs.	CACCalculator
	Free vetted	DOE & EPA: Air Source Heat Pumps	Excel based. Estimates life cycle costs.	<u>ASHeatPumpsCalc</u>
	Calculators	DOE & EPA: Gas Furnaces	Excel based. Estimates life cycle costs.	<u>GFCalc</u>
	to assist in	EPA: Building Upgrade Value Calculator for Office Buildings	Excel based. Estimates the financial impact of proposed investments in energy efficiency in office properties.	<u>BUVCalc</u>
	your analyses	EPA: Cash Flow Opportunity Calculator	Excel based. Quantifies the costs of delaying an energy efficiency project.	CFOCalc
	See Handout	Web-based Calculators	Purpose	Link
		DOE: Air-cooled electric chillers	Web based. Estimates a product's lifetime energy cost savings at various efficiency levels.	<u>ACECCalc</u>
		DOE: Water-chilled electric chillers	Web based. Estimates a product's lifetime energy cost savings at various efficiency levels.	WCEChillersCalc
		DOE: Commercial Heat pumps (5.4 >=< 20 tons)	Web based. Estimates a product's lifetime energy cost savings at various efficiency levels.	CommHPCalc
		DOE: Commercial Boilers	Web based. Includes water or steam fluid type, oil or gas energy type, capacity, and thermal efficiency.	CommBoilersCalc
		DOE-Pacific Northwest National Laboratory: Rooftop Air Conditioners	Web based. Compares high-efficiency rooftop air conditioners to standard equipment in terms of life cycle cost. May be used for multi-family, hospital, hotel, office, restaurant, retail, school, & warehouse.	RooftopACCalc
AN ENERGY COLUTIONS		DOE: Water heaters (electric & gas)	Web based. Estimates a product's lifetime energy cost savings at various efficiency levels.	WHeaterCalc
PR	RGY SOLUTIONS OVIDER Powered by MSCA GreenSTAR		Supports motor and motor systems planning by	

Emissions Trading

Obama's Carbon Tax (Cap & Trade)

- Market-based approach to reducing GHG emissions
 - Government sets a limit (Cap) on amount of GHG's a company may emit
 - Sells / allocates Emissions Permits

- On Jan. 1, 2013 California implemented a Cap & Trade system
 - Legally committed to reduce GHG* emissions to 1990 levels by 2020
- European Union's Cap & Trade system sells emission permits on NYSE Euronext


*GHG = Greenhouse gas

Financial Impact of Cap & Trade

- Educate your clients
- Your services reduce need to buy Emissions Permits
- Clients' opportunity to
 - Improve corporate image
 - Earn income from selling Emissions Permits/Credits
- Motivate your clients to cut energy use as an alternative investment strategy

Polling Question

What percentage of your customers have successfully "defended" cost segregation depreciation on HVAC equipment?

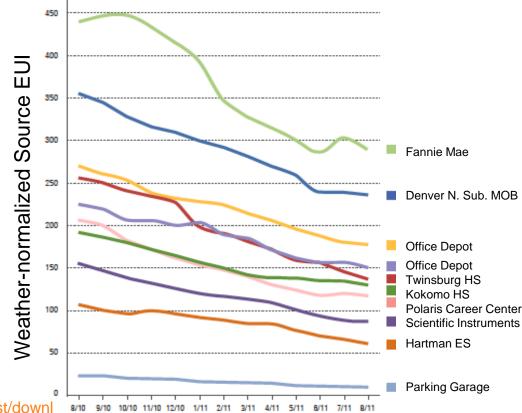
a)0-25%

b)26-50%

c)51-75%

d)76-100%

Case Studies


2011 ENERGY STAR National Building Competition

"Biggest Loser" competition

•245 buildings competed

Savings:

- 240 million kBtu's
- \$5.2 million

Source:

http://www.energystar.gov/ia/business/buildingcontest/downloads/2011 NBC Report.pdf?2ec6-9ab1

12-Month period ending date

Twinsburg HS & Sports Complex, OH

N. Suburban Medical Office Building, CO

http://www.energystar.gov/ia/business/buildingcontest/downl

Polaris Career Center, OH

Hartman Elementary, TX

Scientific Instruments, FL

Kokomo High School, IN

oads/2011 NBC Report.pdf?2ec6-9ab1

Fannie Mae, DC

Office Depot, TX

Office Depot, NC

Source:

63.2%

46.3%

43.4%

43.2%

42.2%

34.6%

34.1%

33.7%

33.1%

32.3%

Totals

\$34,907

\$505,323

\$220,902

\$26,271

\$3,129

\$49,544

\$14,989

\$106,710

\$11,678

\$442,338

\$1,415,791

GHG's

(Mt)

258

2,412

1,071

167

36

262

101

607

80

1,816

6,810

revented

RAI I LEOF THE BUILDINGS	EPA'S NATIONAL BUILDING COMPETITIO		
Organization	Reduced Energy	Energy Cost Savings	Pı

by Univ. of Central FL—Garage C, FL

2040 Main Street

309,000 sf

Irvine, CA, Built 2003

Energy Efficiency Project:

Total cost = \$160,000

Utility rebate = \$80,100

Net cost = \$79,900

Payback = 1.13 years

Bottom line: annual energy savings = \$89,514

Energy Efficiency Projects	Cost	Annual Savings
Installed VFD on 750 ton Trane chiller	\$73K	\$27K
Installed: 4 VFD's: cooling tower fans (2), chilled water pump, & condenser water pump	\$31K	\$16K
Upgraded EMS	\$56K	\$47K

770 City Drive South

Orange, CA, built 1987

Energy Efficiency Project

Replaced two 120 ton Carrier open drive reciprocating compressors (5H120's) with new Turbocor compressors

Cost \$86,000 Utility rebate \$32,000 Net cost = \$54,000 Payback = 2.5 years

Bottom line: annual energy savings = \$31,000

Dreyfuss & Blackford Architects

- Sacramento, CA, built 1965
 - Annual Gas Savings: 35%
 - Annual Electricity Savings: 32%

Steps taken to achieve higher efficiency:

- Installed improved air flow system
- Replaced compressor & cooling coils w/high-efficiency (SEER)-rated equipment
- High flow filters were installed

Bottom line: Combined energy savings = 67%

Lawrence Memorial Hospital

Lawrence, KS, Built 1921

Renovation & Expansion Project

Replaced chiller, motors, & air handlers Added 95,000 sf w/ NO increase in energy

Invested \$20,000 Annual Energy Savings = \$40,000 Payback = 6 months

Advice from facility engineer

"You've got to try your best to make an effective argument for energy efficiency every time you see the opportunity. These investments continue to pay you back over time. By making a succinct presentation in terms that resonated with the CEO, we have built trust and a strong relationship over time. He knows that when I present an idea, it has been vetted, tested, and is well-positioned to generate the savings I estimate."

Bottom line: annual energy savings = \$40,000

New York-Presbyterian Hospital

New York, NY, Chartered 1998

Energy Efficiency Project

- Conducted cost-benefit analysis
- Partnered w/ reputable ESCO who shared expertise
 - Discussed how energy upgrades contribute to patient comfort and employee retention
 - Leveraged outside funding through state grants and regional energy programs

"Facility managers can make an effective pitch to senior leadership through a few key steps, but the most important of all is to switch from "tech talk" to "money talk." Speaking in the language that senior leaders understand will go a long way in being heard."

Bottom line: Learn a new language: CEO / CFO

Thomas Mott Homestead Bed & Breakfast

- Alburg, Vermont, Built 1838
 - 4,200 sf
 - Annual cash savings: \$10,000
 - Annual energy savings: 140,000 kWh
 - Payback period: 6 years

Steps taken to achieve higher efficiency:

- Insulated between exterior and interior walls
- Replaced electric baseboard heating with continuous flow hot water system with a state-of-the-art boiler
- Planted trees to provide shade and reduce heating costs in the winter
- Converted cooking facilities from electric to gas
- Retrofitted highly efficient compact fluorescent lamps
- Replaced 39 double sliding glass doors

Source:

http://www.energystar.gov/index.cfm?c=sb_succe ss.sb_successstories_thomasmott

Certificate of Participation

Final Evaluation Polling Questions

1) How would you rate this training?

- a) Excellent
- b) Very Good
- c) Average
- d) Below Average
- e)Poor

2) How would you rate the trainer, Sherri Levin?

- a)Excellent
- b)Very Good
- c)Average
- d)Below Average
- e)Poor
- 3) Did you learn at least one new idea to promote the financial benefits of energy efficiency?
- a)Yes
- b)No
- c)I am not sure
- 4) Would you recommend this Webinar to other MSCA members?
- a)Yes
- b)No
- c)I am not sure
- 5) What other energy efficiency Webinar topics would you like MSCA to offer its members?

Question & Answer (Q&A)

Manage Energy

Thank you for participating in the MSCA training Financial Benefits of Energy Savings

Barbara Dolim
Executive Director, MSCA
BDolim@MCAA.org

Sherri L. Levin
Managing member, ManageEnergy.com, LLC
SLevin@ManageEnergy.com

Free Energy Calculators &	Energy Modeling Software	
Excel-based Calculators	Purpose	Link
DOE: Central air conditioning	Excel based. Estimates life cycle costs.	CACCalculator
DOE & EPA: Air Source Heat Pumps	Excel based. Estimates life cycle costs.	<u>ASHeatPumpsCalc</u>
DOE & EPA: Gas Furnaces	Excel based. Estimates life cycle costs.	<u>GFCalc</u>
EPA: Building Upgrade Value Calculator for Office Buildings	Excel based. Estimates the financial impact of proposed investments in energy efficiency in office properties.	<u>BUVCalc</u>
EPA: Cash Flow Opportunity Calculator	Excel based. Quantifies the costs of delaying an energy efficiency project.	<u>CFOCalc</u>
Web-based Calculators	Purpose	Link
DOE: Air-cooled electric chillers	Web based. Estimates a product's lifetime energy cost savings at various efficiency levels.	ACECCalc
DOE: Water-chilled electric chillers	Web based. Estimates a product's lifetime energy cost savings at various efficiency levels.	WCEChillersCalc
DOE: Commercial Heat pumps (5.4 >=< 20 tons)	Web based. Estimates a product's lifetime energy cost savings at various efficiency levels.	CommHPCalc
DOE: Commercial Boilers	Web based. Includes water or steam fluid type, oil or gas energy type, capacity, and thermal efficiency.	CommBoilersCalc
DOE-Pacific Northwest National Laboratory: Rooftop Air Conditioners	Web based. Compares high-efficiency rooftop air conditioners to standard equipment in terms of life cycle cost. May be used for multi-family, hospital, hotel, office, restaurant, retail, school, & warehouse.	RooftopACCalc
DOE: Water heaters (electric & gas)	Web based. Estimates a product's lifetime energy cost savings at various efficiency levels.	WHeaterCalc
EPA: Greenhouse Gas Equivalencies Calculator	Web based. Useful in communicating your greenhouse gas reduction strategy, reduction targets, or other initiatives aimed at reducing greenhouse gas emissions.	<u>GHGCalc</u>
Software Downloads	Purpose	Link
DOE: Building Life-Cycle Cost	Provides computational support for the analysis of capital investments in buildings.	BldgLLCCalc
DOE: Motor-driven systems	Supports motor and motor systems planning by identifying the most efficient action for a given repair or motor purchase decision.	<u>MotorsCalc</u>
DOE: Energy Plus (energy modeling)	Energy simulation program that models energy & water use in whole buildings. Used by engineers, architects, and researchers.	<u>EModelingCalc</u>